Abstract

The integration of computer vision algorithms and photogrammetric techniques has become an alternative to the high-cost Mobile Mapping Systems (MMS) and point cloud generation through Structure from Motion (SfM) algorithm is the best example of it. The point cloud generated using SfM is an arbitrary coordinate system and for its georeferencing known global coordinates of the camera exposure stations, rotational and translational parameters are required. The global coordinates of exposure stations are obtained through GNSS (Global Navigation Satellite System). GPS (Global Positioning System) is widely used for getting the positional information of a point. The problem in georeferencing the point cloud arises if the coordinates of a few camera exposure stations are unknown due to GPS shadowing or poor GDOP (Geometric Dilution of Precision). This issue is common in MMS that use laser scanners, GNSS and IMU (inertial measurement unit). In this paper, efforts are made to develop a methodology for handling GPS shadowing or poor accuracy for the georeferencing of arbitrary point clouds generated through SfM. The adopted method uses a blend of photogrammetric techniques of space resection and space intersection to determine the unknown camera exposure stations' coordinates. Bundle adjustment is applied to improve the accuracy of the results obtained. The developed methodology is well analyzed in different cases, and the results show good accuracy in respective cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.