Abstract

Vehicles are extremely vulnerable to single-vehicle accidents under some hazardous driving conditions (i.e. strong wind, icy or snowy road surface). An integrated framework is proposed to assess single-vehicle traffic safety performance of stochastic traffic flow under hazardous driving conditions. Different from most existing studies focusing on a single vehicle moving at a constant speed, for the first time, the proposed work evaluates individual vehicle safety performance based on the time-dependent simulation results of stochastic traffic flow, including instantaneous speeds and positions of each vehicle as a part of simulated traffic flow. Simultaneously, complex geometric and other environmental conditions of the highway system are also considered realistically, not only during the safety assessment process, but also in quantifying the wind loads applied on the vehicles. Finally, with the safety information of each individual vehicle, an overall safety performance index of the whole traffic flow on the highway system is further introduced, which serves as a potential traffic safety performance measure and resilience indicator of transportation infrastructure systems under various hazards. This study has potential applications to not only regular vehicles, but also advanced traffic management and control algorithms for connected and autonomous vehicles in hazardous driving environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call