Abstract

A novel empirical data analysis methodology based on the random matrix theory (RMT) and time series analysis is proposed for the power systems. Among the ongoing research studies of big data in the power system applications, there is a strong necessity for new mathematical tools that describe and analyze big data. This paper used RMT to model the empirical data which also treated as a time series. The proposed method extends traditional RMT for applications in a non-Gaussian distribution environment. Three case studies, i.e., power equipment condition monitoring, voltage stability analysis and low-frequency oscillation detection, illustrate the potential application value of our proposed method for multi-source heterogeneous data analysis, sensitive spot awareness and fast signal detection under an unknown noise pattern. The results showed that the empirical data from a power system modeled following RMT and in a time series have high sensitivity to dynamically characterized system states as well as observability and efficiency in system analysis compared with conventional equation-based methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.