Abstract
AbstractCable loss is a critical extreme event for cable-supported bridges, which sometimes governs the bridge design. Like most extreme events possibly occurring on long-span bridges, cable loss (breakage) may happen with service loads such as traffic and/or wind applied to the bridge simultaneously. Dynamic analysis incorporating critical interactions with realistic service loads as well as appropriate nonlinear effects becomes essential for predicting the time-progressive performance of the bridge following cable-loss incidents. Despite the recent progress on related topics, existing studies on long-span bridges often suffer from the lack of appropriate simulation tools to address the needs of both complex dynamic interactions and nonlinearities associated with cable-loss incidents at the same time. A finite-element (FE) based nonlinear dynamic simulation framework for long-span bridges is developed to simulate the cable-loss incidents of the coupled bridge–traffic–wind system. Different from most exis...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.