Abstract
This paper proposes a framework of judgment system for smart home assistant that utilizes Collective Intelligence Case Based Reasoning (CI-CBR). CBR is suitable for the smart home environment with its system adaptability to the changeful user scenarios. However, existing CBR solutions have shown relatively low accuracy in service recommendation. This research therefore aims at enhancing the accuracy by introducing collective intelligence into the recommendation system. Assuming that multiple agents will make better decision than single agent, we adopted a multi-agent approach to generate the most similar case, which represents the optimal recommendation from the case base. This paper describes how our system enables agents adopting different similarity measures come to an agreement about the most similar case by the means of majority voting in the judging process. Our framework of a collective judgment system demonstrates its potentials to improve recommendation accuracy, and further enhance the performance of existing smart home assistants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.