Abstract
Porphyrin based metal organic frameworks (MOFs) have provided a broad platform through which a wide variety of light harvesting applications have been developed. Of particular interest within light harvesting MOFs containing porphyrin chromophores is the extent to which the both environment of the porphyrin and the porphyrin conformation modulate the photophysical properties. With this in mind, a new MOF (RWLAA-1) has been synthesized based on zinc cations linked by zinc(ii) tetra(4-pyridyl)porphyrin (ZnTPyP) and benzene tricarboxylate (H3BTC) linkers in which the porphyrin exhibits significant conformational distortions that have a profound effect on the photophysics of the material including bathochromic shifts in both the optical (Soret and visible bands) and emission bands, reduction in the energy separation between the Q(0,0) and Q(0,1) emission bands and shorter singlet and triplet state lifetimes. These effects are consistent with the porphyrin deformation resulting in changes in the porphyrin electronic structure and excited state conformational dynamics that alter the vibronic coupling between the excited states (S1 and T1) and the S0 ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.