Abstract
Model-based diagnosis methods rely on a model that defines nominal behavior of a dynamic system to detect abnormal behaviors and isolate faults. On the other hand, data-driven diagnosis algorithms detect and isolate system faults by operating exclusively on system measurements and using very little knowledge about the system. Recently, several researchers have combined model-based diagnosis techniques with datadriven approaches to propose hybrid1solutions for fault diagnosis. Many researchers have proposed methods to integrate specific approaches. In this paper, we demonstrate that data-driven and model-based diagnosis methods follow a similar procedure and can be represented by a general unifying framework. This unifying framework for fault detection and isolation can be used to integrate different methodologies developed by two communities. As a case study, we use the proposed framework to build a crossover solution for fault diagnosis in a wind turbine benchmark. In this case study, we show that it is possible to achieve a better diagnosis performance by using a hybrid method that follows the proposed framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.