Abstract

Software Engineering acts as a foundation stone for any software that is being built. It provides a common road-map for construction of software from any domain. Not following a well-defined Software Development Model have led to the failure of many software projects in the past. Agile is the Software Development Life Cycle (SDLC) Model that is widely used in practice in the IT industries to develop software on various technologies such as Big Data, Machine Learning, Artificial Intelligence, Deep learning. The focus on Software Engineering side in the recent years has been on trying to automate the various phases of SDLC namely- Requirements Analysis, Design, Coding, Testing and Operations and Maintenance. Incorporating latest trending technologies such as Machine Learning and Artificial Intelligence into various phases of SDLC, could facilitate for better execution of each of these phases. This in turn helps to cut-down costs, save time, improve the efficiency and reduce the manual effort required for each of these phases. The aim of this paper is to present a framework for the application of various Artificial Intelligence and Machine Learning techniques in the different phases of SDLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.