Abstract

AbstractComplexity and instability are elements present in the oil and gas industry, making it challenging to predict and deal with all elements and situations that may affect the safety of its operations. Thus, it is essential to classify and analyse the factors that condition resilient performance to promote assertive interventions and increase the resilience potential in this sector. This chapter presents a framework that operationalises the analysis of the factors that condition resilience through methods and techniques of knowledge engineering and resilience engineering. The framework consists of a knowledge model that represents elements that condition resilient performance and data science tools to enable handling and analysing workers’ perceptions and supporting the analysis of safety events. Through an interdisciplinary approach, the framework was established involving an integrative review of the literature and the contribution of experts from several areas for defining the analysis model. Knowledge engineering methods and techniques were used to enable data analysis on integrated operations of companies in the oil and gas sector, thus allowing a systemic view on the conditionings of resilient performance in the companies that participated in the study. As main results, a new generation of tools for data processing and support for the analysis of factors that influence the potential for resilience and a holistic view of latent factors for promoting resilience are highlighted.KeywordsResilienceHuman factorsResilience assessmentKnowledge engineeringResilience engineering

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.