Abstract

Snake robots are the multibody mechanisms allowing us to solve specific problems efficiently, i.e., navigate into diverse environments and maneuver through tight spaces or uneven grounds in a way that resembles living organisms. However, the path following and controlling such systems is challenging due to nonlinear dynamics, coupling between links, and nonstandard definitions of the set-point that differ from industrial applications. This paper describes a framework for simulation and evaluation of the controller design for snake robot as the set of tools for the 3D design and robot dynamic simulation. Combined with a theoretical background (equations of robot dynamics), it allows testing new solutions and strategies of robot control design. Firstly, based on the proposed methodology, we provide a mechanical design of a ten-link snake robot. We present control algorithms enabling point-to-point tracking of the robot position in two cases: (i) tracking the center of gravity of the robot and (ii) tracking the position of the head of the robot. Then we provide a simulation-based robustness analysis of a simple fault-tolerant control algorithm, where some snake robot joints are broken. The proposed framework can be used efficiently to study control strategies for multibody mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call