Abstract

Waveguide displays have been shown to exhibit multiple interactions of light at the in-coupler diffractive surface, leading to light loss. Any losses at the in-coupler set a fundamental upper limit on the full-system efficiency. Furthermore, these losses vary spatially across the beam for each field, significantly decreasing the displayed image quality. We present a framework for alleviating the losses based on irradiance, efficiency, and MTF maps. We then derive and quantify the innate tradeoff between the in-coupling efficiency and the achievable modulation transfer function (MTF) characterizing image quality. Applying the framework, we show a new in-coupler architecture that mitigates the efficiency vs image quality tradeoff. In the example architecture, we demonstrate a computation speed that is 2,000 times faster than that of a commercial non-sequential ray tracer, enabling faster optimization and more thorough exploration of the parameter space. Results show that with this architecture, the in-coupling efficiency still meets the fundamental limit, while the MTF achieves the diffraction limit up to and including 30 cycles/deg, equivalent to 20/20 vision.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.