Abstract

Humanoid robots are expected to work and collaborate with humans performing in changing environments. Developing this kind of robots requires them to display intelligent behaviors. For behaviours to be considered as intelligent they must at least present the ability to learn skills, represent skill’s knowledge, and adapt and generate new skills. In this work a framework is proposed for the generation and adaptation of learned models of robot skills for complying with task constraints. The proposed framework is meant to allow: for an operator to teach and demonstrate to the robot the motion of a task skill it must reproduce; to build a knowledge base of the learned skills knowledge allowing for its storage, classification and retrieval; to adapt and generate learned models of a skill, to new context, for compliance with the current task constraints. A learning from demonstration approach is employ to learn robot skill by means of probabilistic methods, encoding the motion dynamics in a Gaussian Mixture Model. We propose that this models of the skill can be operate and combine to represent and adapt the robot skills.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.