Abstract

Social networks such as twitter have emerged as social platforms that can impart a massive knowledge base for people to share their unique ideas and perspectives on various topics and issues with friends and families. Sentiment analysis based on machine learning has been successful in discovering the opinion of the people using redundantly available data. However, recent studies have pointed out that imbalanced data can have a negative impact on the results. In this paper, we propose a framework for improved sentiment analysis through various ordered preprocessing steps with the combination of resampling of minority classes to produce greater performance. The performance of the technique can vary depending on the dataset as its initial focus is on feature selection and feature combination. Multiple machine learning algorithms are utilized for the classification of tweets into positive, negative, or neutral. Results have revealed that random minority oversampling can provide improved performance and it can tackle the issue of class imbalance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.