Abstract

Rapid population growth has led to significant demand for residential buildings around the world. Consequently, there is a growing energy demand associated with increased greenhouse gas (GHG) emissions. The residential building energy demand in arid countries such as Saudi Arabia is supplied with fossil fuel. The existing consumption pattern of fossil fuels in Saudi Arabia is less sustainable due to the depletion of fossil fuel resources and resulting environmental impacts. Buildings built in hot and arid climatic conditions demand high energy for creating habitable indoor environments. Enormous energy is required to maintain a cool temperature in hot regions. Moreover, climate change may have different impacts on hot climatic regions and affect building energy use differently. This means that different building interventions may be required to improve the performance of building energy performance in these geographical regions, thereby reducing the emissions of GHGs. In this study, this framework has been applied to Saudi Arabia, a hot and arid country. This research proposes a community–government partnership framework for developing low-carbon energy in residential buildings. This study focuses on both the operational energy demand and a cost-benefit analysis of energy use in the selected geographical regions for the next 30 years (i.e., 2050). The proposed framework primarily consists of four stages: (1) data collection on energy use (2020 to 2050); (2) setting a GHG emissions reduction target; (3) a building intervention approach by the community by considering cost, energy, and GHG emissions using the Technique for Order of Performance by Similarity to the Ideal Solution (TOPSIS) to select the best combinations in each geographical region conducting 180 simulations; and (4) a clean energy approach by the government using grey relational analysis (GRA) to select the best clean energy system on the grid. The clean energy approach selected six different renewable power generation systems (i.e., PV array, wind turbine, hybrid system) with two storage systems (i.e., battery bank and a combination of electrolyte, fuel cell, and hydrogen tank storage). This approach is designed to identify the best clean energy systems in five geographical regions with thirty scenario analyses to define renewable energy-economy benefits. This framework informs through many engineering tools such as residential building energy analysis, renewable energy analysis, multi-criteria decision analysis (MCDA) techniques, and cost-benefit analysis. Integration between these engineering tools with the set of energy policies and public initiatives is designed to achieve further directives in the effort to reach greater efficiency while downsizing residential energy demands. The results of this paper propose that a certain level of cooperation is required between the community and the government in terms of financial investments and the best combinations of retrofits and clean energy measures. Thus, retrofits and clean energy measures can help save carbon emissions (enhancing the energy performance of buildings) and decrease associated GHG emissions, which can help policy makers to achieve low-carbon emission communities.

Highlights

  • The Paris Agreement represents a decentralized approach by embedding national carbon reduction goal visions towards an international framework to embrace collective action based on Nationally Determined Contributions (NDC) system in Saudi Arabia to identify its challenges and opportunities [32]

  • Creating a healthy environment for the industrial base to accelerate renewable energy innovations is a necessary transformation in the energy policy system through the low-carbon energy framework for energy performance management to lower carbon capture at the macro-community level in the effort toward achieving appropriate sustainable stability

  • A community-government partnership framework has been proposed for low-carbon energy use in residential buildings in hot and arid regions

Read more

Summary

Introduction

The demand for residential buildings has become a significant demand due to increasing population growth rates. There has been a growing energy demand associated with the increase in greenhouse gas (GHG) emissions. The residential building energy demand in arid countries such as Saudi Arabia accounts for 52% of the total national electricity consumption [1,2]. The existing consumption pattern of fossil fuels in Saudi Arabia is less sustainable due to the depletion of fossil fuel resources and subsequent environmental impacts. The carbon dioxide level increased from 172 million tons in 1990 to 625 million tons in 2018 from the consumption of fossil fuels and related industrial operations [3]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call