Abstract
In order to offer sensory data as a service over the cloud, it is necessary to execute a cost-effective and yet precise data analytical logic within the sensing units. However, it is quite questionable as such forms of analytical operation are quite resource dependent which cannot be offered by the resource constraint sensory units. Therefore, the proposed paper introduces a novel approach of performing cost-effective data analytical method in order to extract knowledge from big data over the cloud. The proposed study uses a novel concept of the frequent pattern along with a tree-based approach in order to develop an analytical model for carrying out the mining operation in the large-scale sensor deployment over the cloud environment. Using a simulation-based approach over the mathematical model, the proposed model exhibit reduced mining duration, controlled energy dissipation, and highly optimized memory demands for all the resource constraint nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.