Abstract
Frames in a Banach space B were defined as a sequence in its dual space B ⁎ in some recent references. We propose to define them as a collection of elements in B by making use of semi-inner products. Classical theory on frames and Riesz bases is generalized under this new perspective. We then aim at establishing the Shannon sampling theorem in Banach spaces. The existence of such expansions in translation invariant reproducing kernel Hilbert and Banach spaces is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.