Abstract

In this paper, the concept of a family of local atoms in a Banach space is introduced by using a semi-inner product (s.i.p.). Then this concept is generalized to an atomic system for operators in Banach spaces. We also give some characterizations of atomic systems leading to new frames for operators. In addition, a reconstruction formula is obtained. The characterizations of atomic systems allow us to state some results for sampling theory in s.i.p reproducing kernel Banach spaces. Finally, we define the concept of frame operator for these kinds of frames in Banach spaces and then we establish a perturbation result in this framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.