Abstract

Purpose Speckle noise removal in ultrasound images is one of the important tasks in biomedical-imaging applications. Many filtering -based despeckling methods are discussed in many existing works. Two-dimensional (2-D) transforms are also used enormously for the reduction of speckle noise in ultrasound medical images. In recent years, many soft computing-based intelligent techniques have been applied to noise removal and segmentation techniques. However, there is a requirement to improve the accuracy of despeckling using hybrid approaches. Design/methodology/approach The work focuses on double-bank anatomy with framelet transform combined with Gaussian filter (GF) and also consists of a fuzzy kind of clustering approach for despeckling ultrasound medical images. The presented transform efficiently rejects the speckle noise based on the gray scale relative thresholding where the directional filter group (DFB) preserves the edge information. Findings The proposed approach is evaluated by different performance indicators such as the mean square error (MSE), peak signal to noise ratio (PSNR) speckle suppression index (SSI), mean structural similarity and the edge preservation index (EPI) accordingly. It is found that the proposed methodology is superior in terms of all the above performance indicators. Originality/value Fuzzy kind clustering methods have been proved to be better than the conventional threshold methods for noise dismissal. The algorithm gives a reconcilable development as compared to other modern speckle reduction procedures, as it preserves the geometric features even after the noise dismissal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.