Abstract

This purpose of this work is to give a detailed description of a surgical technique for frameless robot-assisted asleep deep brain stimulation (DBS) of the centromedian thalamic nucleus (CMT) in drug-resistant epilepsy (DRE). Ten consecutively enrolled patients who underwent CMT-DBS were included in the study. The FreeSurfer "Thalamic Kernel Segmentation" module and experience target coordinates were used for locating the CMT, and quantitative susceptibility mapping (QSM) images were used to check the target. The patient's head was secured with a head clip, and electrode implantation was performed with the assistance of the neurosurgical robot Sinovation®. After opening the dura, the burr hole was continuously flushed with physiological saline to stop air from entering the skull. All procedures were performed under general anesthesia without intraoperative microelectrode recording (MER). The mean age of the patients at surgery and onset of seizures was 22years (range 11-41years) and 11years (range 1-21years), respectively. The median duration of seizures before CMT-DBS surgery was 10years (2-26years). CMT was successfully segmented, and its position was verified by experience target coordinates and QSM images in all ten patients. The mean surgical time for bilateral CMT-DBS in this cohort was 165 ± 18min. The mean pneumocephalus volume was 2 cm3. The median absolute errors in the x-, y-, and z-axes were 0.7mm, 0.5mm, and 0.9mm, respectively. The median Euclidean distance (ED) and radial error (RE) was 1.3 ± 0.5mm and 1.0 ± 0.3mm, respectively. No significant difference was found between right- and left-sided electrodes regarding the RE nor the ED. After a mean 12-month follow-up, the average reduction in seizures was 61%, and six patients experienced a ≥ 50% reduction in seizures, including one patient who had no seizures after the operation. All patients tolerated the anesthesia operation, and no permanent or serious complications were reported. Frameless robot-assisted asleep surgery is a precise and safe approach for placing CMT electrodes in patients with DRE, shortening the surgery time. The segmentation of the thalamic nuclei enables the precise location of the CMT, and the flow of physiological saline to seal the burr holes is a good way to reduce the influx of air. CMT-DBS is an effective method to reduce seizures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call