Abstract
The problem of locating a periodically inserted frame synchronization pattern in random data for a <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</tex> -ary digital communication system operating over the additive white Gaussian noise channel is considered. The optimum maximum-likelihood decision rule, high signal-to-noise approximate maximum likelihood decision rule, and ordinary correlation decision rule for frame synchronization are derived for both coherent and noncoherent phase demodulation. A general lower bound on synchronization probability is derived for the coherent correlation rule. Monte Carlo computer simulations of all three decision rules, along with evaluations of the lower bound for the coherent correlation rule, were performed for the coherent MPSK, coherent, and noncoherent <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">M</tex> ary orthogonal, and 16 QAM signaling schemes. These results show that in each case the high signal-to-noise maximum-likelihood rules have a performance nearly equal to that of the maximum-likelihood rules over a wide range of practically interesting signal-to-noise ratios (SNR's). These high SNR decision rules also provide significant performance improvement over the simple correlation rules. Moreover, they are much simpler to implement than the maximum-likelihood decision rules and, in fact, are no more complex than the correlation rules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.