Abstract

A Mendelsohn triple system of order ν, MTS(ν) for short, is a pair (X, B) where X is a ν-set (of points) and B is a collection of cyclic triples on X such that every ordered pair of distinct points from X appears in exactly one cyclic triple of B. The cyclic triple (a, b, c) contains the ordered pairs (a, b), (b, c) and (c, a). An MTS(ν) corresponds to an idempotent semisymmetric Latin square (quasigroup) of order ν. An MTS(ν) is called frame self-orthogonal, FSOMTS for short, if its associated semisymmetric Latin square is frame self-orthogonal. It is known that an FSOMTS(1 n ) exists for all n≡1 (mod 3) except n=10 and for all n≥15, n≡0 (mod 3) with possible exception that n=18. In this paper, it is shown that (i) an FSOMTS(2 n ) exists if and only if n≡0,1 (mod 3) and n>5 with possible exceptions n∈{9, 27, 33, 39}; (ii) an FSOMTS(3 n ) exists if and only if n≥4, with possible exceptions that n∈{6, 14, 18, 19}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.