Abstract

Motivated by frame-vector for a unitary system, we study a class of cyclic operators on a separable Hilbert space which is called frame-cyclic operators. The orbit of such an operator on some vector, namely frame-cyclic vector, is a frame. Some properties of these operators on finite- and infinite-dimensional Hilbert spaces and their relations with cyclic and hypercyclic operators are established. A lower and upper bound for the norm of a self-adjoint frame-cyclic operator is obtained. Also, construction of the set of frame-cyclic vectors is considered. Finally, we deal with Kato’s approximation of frame-cyclic operators and discuss their frame-cyclic properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.