Abstract
In the first part of this paper we investigate the intuitionistic version $iI\!\Sigma_1$ of $I\!\Sigma_1$ (in the language of $PRA$ ), using Kleene's recursive realizability techniques. Our treatment closely parallels the usual one for $HA$ and establishes a number of nice properties for $iI\!\Sigma_1$ , e.g. existence of primitive recursive choice functions (this is established by different means also in [D94]). We then sharpen an unpublished theorem of Visser's to the effect that quantifier alternation alone is much less powerful intuitionistically than classically: $iI\!\Sigma_1$ together with induction over arbitrary prenex formulas is $\Pi_2$ -conservative over $iI\!\Pi_2$ . In the second part of the article we study the relation of $iI\!\Sigma_1$ to $iI\!\Pi_1$ (in the usual arithmetical language). The situation here is markedly different from the classical case in that $iI\!\Pi_1$ and $iI\!\Sigma_1$ are mutually incomparable, while $iI\!\Sigma_1$ is significantly stronger than $iI\!\Pi_1$ as far as provably recursive functions are concerned: All primitive recursive functions can be proved total in $iI\!\Sigma_1$ whereas the provably recursive functions of $iI\!\Pi_1$ are all majorized by polynomials over ${\Bbb N}$ . 0 $iI\!\Pi_1$ is unusual also in that it lacks closure under Markov's Rule $\mbox{MR}_{PR}$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.