Abstract

Type III beta phosphatidylinositol 4-kinase (PI4KIIIβ) is the only clinically validated drug target in Plasmodium kinases and therefore a critical target in developing novel drugs for malaria. Current PI4KIIIβ inhibitors have solubility and off-target problems. Here we set out to identify new Plasmodium PI4K ligands that could serve as leads for the development of new antimalarial drugs by building a PPI4K homology model since there was no available three-dimensional structure of PfPI4K and virtually screened a small library of ~ 22 000 fragments against it. Sixteen compounds from the fragment-based virtual screening (FBVS) were selected based on ≤ − 9.0 kcal/mol binding free energy cut-off value. These were subjected to similarity and sub-structure searching after they had passed PAINS screening and the obtained derivatives showed improved binding affinity for PfPI4K (− 10.00 to − 13.80 kcal/mol). Moreover, binding hypothesis of the top-scoring compound (31) was confirmed in a 100 ns molecular dynamics simulation and its binding pose retrieved after the system had converged at about 10 ns into the evolution was described to lay foundation for a rationale chemical-modification to optimize binding to PfPI4K. Overall, compound 31 appears to be a viable starting point for the development of PPI4K inhibitors with antimalarial activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.