Abstract

The fragmentation reactions of a variety of alkylphenylammonium ions, C(6)H(5)NH(3 -n)R(n)(+) (n >/= 1, R = CH(3), C(2)H(5), i-C(3)H(7), n-C(4)H(9)) were studied by energy-resolved mass spectrometry. Ionization was by fast atom bombardment (FAB) or electrospray ionization. Energy-resolved fragmentation data were obtained by low-energy collision-induced dissociation (CID) in the quadrupole cell of a hybrid sector/quadrupole instrument following FAB ionization and by cone-voltage CID in the interface region of the electrospray/quadrupole instrument. A comparison of the two methods of obtaining energy-resolved data showed that very similar results are obtained by the two methods. The fragmentation reactions of the alkylphenylammonium ions are rationalized in terms of competitive formation of an [R(+)-NC(6)H(5)H(3-n)R(n-1)] complex or a [C(6)H(5)H(3-n)R(n-1)N(+.)-(.)R] complex. The former complex fragments by internal proton transfer to yield C(6)H(5)H(3 -n)R(n -1)NH(+) and [R -H] whereas the latter complex fragments to form C(6)H(5)H(3 -n)R(n -1)N(+) and an alkyl radical. Alkane elimination, which is very prominent for tetraalkylammonium ions, most likely involves sequential elimination of an alkyl radical and either an H atom or an alkyl radical for the phenyl-substituted ammonium ions. Copyright 1999 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call