Abstract

The pivotal quality of proximity graphs is connectivity, i.e., all nodes in the graph are connected to one another either directly or via intermediate nodes. These types of graphs are often robust, i.e., they are able to function well even if they are subject to limited removal of elementary building blocks, as may occur for random failures or targeted attacks. Here, we study how the structure of these graphs is affected when nodes get removed successively until an extensive fraction is removed such that the graphs fragment. We study different types of proximity graphs for various node-removal strategies. We use different types of observables to monitor the fragmentation process, simple ones like the number and sizes of connected components and more complex ones like the hop diameter and the backup capacity, which is needed to make a network N-1 resilient. The actual fragmentation turns out to be described by a second-order phase transition. Using finite-size scaling analyses we numerically assess the threshold fraction of removed nodes, which is characteristic for the particular graph type and node deletion scheme; this suffices to decompose the underlying graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call