Abstract

Casuarina equisetifolia, a hard wood, and a popular energy crop in many tropical countries, was investigated experimentally for its char fragmentation in a laboratory scale atmospheric bubbling fluidized bed combustor. The effect of fuel shape and size on wood char fragmentation was studied. Wood particles of spherical, cylindrical (aspect ratio of 1), and cubical shapes of different sizes ranging from 10 to 25 mm were used in the experiments. Fragmentation of wood char was quantified in terms of various parameters, such as Number of Fragments (NF), Percentage of Fragmentation Events, Frequency of Fragmentation, Timing interval of Fragmentation, Size distribution of char and Fragmentation Index (FI). Also, qualitative observations on the evolution of char in terms of deformation, cracks and surface texture are discussed. It was observed that Casuarina equisetifolia wood of sizes greater than 15 mm, of all shapes undergoes primary fragmentation during the devolatilization phase. Furthermore, chars fragment at the early stages (1st or 2nd quarter) of the char combustion phase, underscoring the significance of the phenomenon in fluidized bed combustion. For all the shapes of wood considered, there appears to be a cut-off size of the initial wood, below which its char certainly undergoes fragmentation. It was observed that the average char particle size at any instance during its combustion falls in a narrow range of 3.7–6.9 mm, 3–6.6 mm and 3–9.5 mm for spherical, cylindrical and cubical wood particles, respectively. Wood of initially cylindrical shape undergoes extensive fragmentation when compared with spherical and cubical shapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.