Abstract

Helium nanodroplets ("HNDs") are widely used for forming tailor-made clusters and molecular complexes in a cold, transparent, and weakly interacting matrix. The characterization of embedded species by mass spectrometry is often complicated by the fragmentation and trapping of ions in the HNDs. Here, we systematically study fragment ion mass spectra of HND-aggregated water and oxygen clusters following their ionization by charge transfer ionization ("CTI") and Penning ionization ("PEI"). While the efficiency of PEI of embedded clusters is lower than for CTI by about factor 10, both the mean sizes of detected water clusters and the relative yields of unprotonated cluster ions are significantly larger, making PEI a "soft ionization" scheme. However, the tendency of ions to remain bound to HNDs leads to a reduced detection efficiency for large HNDs containing >104 helium atoms. These results are instrumental in determining optimal conditions for mass spectrometry and photoionization spectroscopy of molecular complexes and clusters aggregated in HNDs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.