Abstract

The lamellar mesophase formed by surfactant 1,4-bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in deuterated water is mixed with poly(dimethylacrylamide) (PDMAA) polymers of low molecular weight (Mn= (2-20) x 10(3)). The mixtures separate into microphases (lamellar plus isotropic polymer solution). Their microstructures are studied by microscopy, small-angle X-ray scattering (SAXS), and deuterium NMR (2H NMR). According to SAXS, the lamellar phase fractionates the molecular weight distribution of the polymer, by dissolving only chains with coil sizes smaller than the thickness of the water layers between lamellae, and keeping larger chains segregated from the lamellar phase. The fraction of polymer that is segregated from the lamellar phase grows with Mn of the polymer. In 2H NMR, there are two signals, a quadrupolar doublet (water molecules hydrating the anisotropic lamellar phase contribute to this doublet) and a singlet (water molecules in the isotropic polymer solution contribute to this singlet). These two signals are deconvoluted to analyze the phases. Mixing with the polymer produces the partial dispersion of the lamellar phase into small fragments (microcrystallites). The structure of these microcrystallites is such that they conserve the regular long period spacing of the macrophase, and are thus identified in SAXS, but they are smaller than the minimum size required to produce quadrupolar splitting (about 4 microm), and therefore, in 2H NMR, they contribute to the singlet. 2H NMR can thus not distinguish between small microcrystallites and an isotropic polymer solution segregated from the lamellar phase; instead small microcrystallites are detected as an apparent increase of the isotropic solution. The degree of dispersion produced by the polymer in the lamellar phase is correlated with the degree of segregation that the polymer suffers. Thus, much greater dispersion into microcrystallites is produced by the higher Mn polymers than by the lower Mn polymers (in the range covered by the present samples, although with a much higher molecular weight sample (3 x 10(6)) that is totally segregated no such microcrystallites were detected).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.