Abstract

An extension of time-dependent covariant density functional theory that includes particle–vibration coupling is applied to the charge-exchange channel. Spin-dipole excitation spectra are calculated an compared to available data for 90Zr and 208Pb. A significant fragmentation is found for all three angular-momentum components of the spin-dipole strength as a result of particle–vibration coupling, as well as a shift of a portion of the strength to higher energy. A high-energy tail is formed in the strength distribution that linearly decreases with energy. Using a model-independent sum rule, the corresponding neutron skin thickness is estimated and shown to be consistent with values obtained at the mean-field level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.