Abstract
A growing number of peptides are being used today in bioanalytical laboratories. Because of this, there is an increasing interest in the development of highly sensitive, specific and robust liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays for the quantitative analysis of peptides in biological samples. Among the mass spectrometers previously used for peptide quantification, triple quadrupole mass spectrometers are generally not considered the instrument of choice. With this instrumentation, collision cascades or multiple fragmentations tend to generate multiple peaks that have weak intensities. This leads to a loss in detection sensitivity. However, in cases where immonium product ions were formed in abundance, it was found that peptide quantification succeeded. A common feature of these peptides is their intra-loop structure. To elucidate the usefulness of this feature in fragmentation, several peptide analytes with intra-chain disulfide bonds were investigated in this study, including a newly synthesized analog having a single amino acid substitution. The results presented here indicate that abrupt bond cleavage from the intra-loop structure of peptides could be one of the premises for intense immonium ion generation. In contrast, any preferential cleavage of peptide bonds (e.g., proline effect) that gives rise to a linearized sequence would break the intactness of the loop and prevent it from completely dissociating. In addition, the utilization of immonium product ions in LC/MS/MS was demonstrated for the determination of peptides with intra-chain disulfide bonds in biological fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.