Abstract

The diagnostic fragmentation of N-oxides resulting from loss of the oxygen atom (MH+ --> MH+-O) in electrospray and atmospheric pressure chemical ionization (APCI) mass spectra was investigated. When the temperature of the heated capillary tube was elevated, the ratio of the intensity of the [MH+ -16] fragment to the precursor ion (MH+) increased. This 'deoxygenation' process was associated with thermal activation and did not result from collisional activation in the desolvation region of the API source. Although the extent of 'deoxygenation' is compound-dependent, it can provide evidence for the presence of an N-oxide in a sample and can be used to distinguish N-oxides from hydroxylated metabolites (Ramanathan et al. Anal. Chem. 2000; 72: 1352). To demonstrate the practical application of thermal fragmentation of N-oxides, liquid chromatography (LC)/APCI-MS was used to distinguish an N-oxide drug from its hydroxylated metabolite in an unprocessed rat urine sample, despite the fact that the drug and its metabolite were not fully resolved by HPLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.