Abstract

The efficiency of in-trap fragmentation in a low-pressure linear ion trap (LIT), using dipolar excitation, is dependent upon the choice of both the excitation q and the drive frequency of the quadrupole. In the work presented here, fragmentation efficiencies have been measured as a function of excitation q for drive frequencies of 816 kHz and 1.228 MHz. The experiments were carried out by fragmenting reserpine (609.23-->448.20 Th and 397.21-->365.19 Th transitions) and caffeine (195-->138 Th and 138-->110 Th transitions). The data showed that the onset of efficient fragmentation occurred at a lower Mathieu q for the LIT operated at 1.228 MHz when compared with the LIT operated at 816 kHz. A comparison of the fragmentation efficiency curves as a function of pseudo-potential well depth showed that the onset of fragmentation is independent of the drive frequency. In addition, a comparison of the fragmentation efficiency curves showed that all four of the precursor ions fragmented within a range of four V of pseudo-potential well depth. The choice of an appropriate excitation q can then be determined based upon a minimum pseudo-potential well depth, quadrupole field radius, drive frequency, and the mass of interest. Fragmentation efficiencies were also found to be significantly greater when using the higher drive frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.