Abstract
Bullet fragments have been previously observed in the remains and edible portions of big game animals that were harvested using rifles. The fragmentation issue has attracted attention because traditional hunting bullets are more than 70% lead, which is toxic to humans and scavengers in the ecosystem. We prepared gunshot wounds in ballistic gelatin blocks, and then applied synchrotron X-ray imaging technology to the bullet fragmentation process for the first time. The K edge subtraction (KES) imaging method allowed a clear separation of lead in an image from false positives, including the other major bullet component, copper, and non-lead objects such as bone fragments. The superior brightness of synchrotron radiation was also harnessed to resolve thousands of embedded sub-10 μm fragments, a size range not previously observed using commonly applied X-ray imaging modalities. The results challenge the current understanding of the maximum extent that fragments may be distributed, and the effectiveness of imaging methods used to screen wild game donations at food banks for lead bullet fragments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.