Abstract

Fragmentation of DNA is an essential step for many biological applications including the preparation of next-generation sequencing (NGS) libraries. As sequencing technologies push the limits towards single cell and single molecule resolution, it is of great interest to reduce the scale of this upstream fragmentation step. Here we describe a miniaturized DNA shearing device capable of processing sub-microliter samples based on acoustic shearing within a microfluidic chip. A strong acoustic field was generated by a Langevin-type piezo transducer and coupled into the microfluidic channel via the flexural lamb wave mode. Purified genomic DNA, as well as covalently cross-linked chromatin were sheared into various fragment sizes ranging from ∼180 bp to 4 kb. With the use of standard PDMS soft lithography, our approach should facilitate the integration of additional microfluidic modules and ultimately allow miniaturized NGS workflows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.