Abstract
The fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll (HPGR) was studied based on the characteristics of comminuted products at different specific pressure levels. The major properties included the reduction ratio, liberation, specific surface energy, and specific surface area. The results showed that the fracture of low-grade hematite ore in HPGR was an interactive dynamic process in which the interaction between coarse particles of gangue minerals and fine particles of valuable minerals was alternately continuous with increased compactness and compacting strength of materials. Within a range of 2.8–4.4 N/mm2, valuable minerals were crushed after preferentially absorbing energy, whereas gangue minerals were not completely crushed and only acted as an energy transfer medium. Within a range of 4.4–5.2 N/mm2, gangue minerals were adequately crushed after absorbing the remaining energy, whereas preferentially crushed valuable minerals acted as an energy transfer medium. Within a range of 5.2–6.0 N/mm2 range, the low-grade hematite ore was not further comminuted because of the “size effect” on the strength of materials, and the comminution effect of materials became stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.