Abstract

The role of cationization in the fragmentation behavior of glycoconjugates is amply documented in collisional activation techniques but remains less explored in ozone-induced dissociation mass spectrometry (OzID-MS). OzID-MS has been used to elucidate the location of carbon-carbon double bonds in unsaturated lipids. Previously, we demonstrated the structural analysis of unsaturated glycosphingolipids using OzID-MS by mass-selecting the [M+Na]+ adduct for fragmentation. In this work, we aimed to examine the effect of different adducts, namely [M+Na]+, [M+Li]+, and [M+H]+ on the OzID-MS fragmentation behavior of a representative unsaturated glycosphingolipid, LacCer d18:1/18:1(9Z). Our data show that [M+H]+ primarily undergoes dehydration followed by collision-induced dissociation-like loss of the headgroup, while [M+Li]+ and [M+Na]+ dissociate at the double bonds albeit with slightly different intensities of the resulting fragments. Using molecular mechanics and theoretical calculations at the semiempirical level, we report for the first time the gas-phase structure of cationized glycosphingolipids, which helps rationalize the observed bond cleavage. Our findings highlight that the type of adducts can influence gas-phase ion structure of glycosphingolipids and subsequently affect their fragmentation in OzID-MS. This study contributes to the growing body of knowledge on OzID-MS and gas-phase structures of ionized lipids and the findings have the potential to be extended to other more complex glycoconjugates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.