Abstract

In order to understand the fragmentation and atomization characteristics of the liquid jet in transverse gas film, a pintle injection element using air and water as simulants is designed. The two-phase flow large eddy simulation and backlight imaging are used to study the liquid-jet breakup process and spray-field dynamic characteristics in the nearorifice area of pinte injection element under the atmospheric environment. The primary fragmentation process of the liquid jet dominated by surface wave is obtained by large eddy simulation, which reveals the establishment process of the spray field in near-orifice area of the gas-liquid pintle injector. After the subsonic airflow leaves the slit, it expands and accelerates into supersonic state. Then the deceleration and pressurization phenomenon occurs once the supersonic airflow passes through the detached bow shock upstream of the liquid jet. The liquid jet bends downstream due to the difference in pressure between upstream and downstream, and the Rayleigh-Taylor (R-T) unstable surface wave appears on the jet windward surface. As the surface wave develops, the penetration of the wave trough by airflow causes the continuous liquid jet to fragment. Proper orthogonal decomposition (POD) method can effectively reconstruct spray snapshot. The POD mode shows that the low-frequency spray oscillation in near-orifice area is caused by the overall expansion/contraction process of the spray field, while the high-frequency one is due to the “impact wave” movement of the liquid block or liquid mist group on the windward side. The latter is produced by the R-T unstable surface wave before the jet breakup, and can be categorized as traveling wave structure. The dimensionless traveling wave wavelength has a power-law relationship with Weber number.

Highlights

  • The primary fragmentation process of the liquid jet dominated by surface wave is obtained by large eddy simulation

  • once the supersonic airflow passes through the detached bow shock upstream of the liquid jet

  • unstable surface wave appears on the jet windward surface

Read more

Summary

Horseshoe vortices Column breakup vortices

构), 有利于对表面波主导破碎过程中特征结构的 时间演化特性和速度变化规律开展研究; 而对比网 格 B 仿真得到的表面波形态与试验结果差异较大 且时间相关性较差, 因此该网格无法满足计算精 度. 图 7 中计算网格和对比网格 A 的仿真结果相 对于试验结果的不足主要在于仿真无法得到沿连 续射流分布的浓密液雾, 原因为仿真计算难以捕捉 小于网格尺寸的液滴颗粒, 特别是气液切向速度梯 度诱发 K-H 不稳定而剥离的大量小尺寸液滴; 喷 孔附近较为浓密的液雾是由于亚声速流动的分离 区内存在旋转方向相反的分离涡与再附涡, 能将小 尺寸液滴沿分离区往上游传递, 但在仿真结果中同 样不是很明显. 图 8 工 况 CT14#中瞬时射流结构 (红 色 ) 与 涡 结 构 (绿 色) 的叠加图, 其中涡结构由速度梯度第二不变量 [31] 的等 值面表示 Fig. 8. 从图 已知 模态 3 和模态 4 的时间系数功率谱基本一致, 通过 交叉功率谱 CPSD(cross-power spectrum density, 相关介绍参见文献 [33]) 进一步分析两者时间系数 的相关联, 图 的结果显示, 在交叉功率谱的能 量较大的频段 (3—6 kHz) 两者的相位差为 90°左 右, 且图 9(e) 和图 9(f) 显示这两个模态空间结构 相差四分之一波长, 故可认为两者相互耦合形成了. 图 11 工 况 CT17#的 POD 模 态 3 和 4 时间系数的交叉 功率谱幅值和相位角 Fig. 11. Amplitude and phase angle from CPSD (Mode-3 and Mode-4) of case CT17#. 图 12 展示了工况 CT05#, CT11#和 CT23# 中耦合产生行波结构的 POD 模 态 , 其 中 工 况 CT23#中相关模态的位置有所变化, 可认为该行 波结构在横向射流中广泛存在. 图 12 工况 CT05#, CT11#和 CT23#中耦合产生行波结 构的 POD 模态 Fig. 12. POD modes that generate the traveling wave structure in case CT05#, CT11# and CT23#.

CDW e
Reconstruction deviation
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call