Abstract
Fragment merging approach was applied for the design of thiazole/thiazolidinone clubbed pyrazoline derivatives 5a-e, 6a-c, 7 and 10a-d as dual COX-2 and 5-LOX inhibitors. Compounds 5a, 6a, and 6b were the most potent and COX-2 selective inhibitors (IC50= 0.03–0.06 μM, SI = 282.7–472.9) with high activity against 5-LOX (IC50 = 4.36–4.86 μM), while compounds 5b and 10a were active and selective 5-LOX inhibitors with IC50 = 2.43 and 1.58 μM, respectively. In vivo assay and histopathological examination for most active candidate 6a revealed significant decrease in inflammation with higher safety profile in comparison to standard drugs. Compound 6a exhibited the same orientation and binding interactions as the reference COX-2 and 5-LOX inhibitors (celecoxib and quercetin, respectively). Consequently, compound 6a has been identified as a potential lead for further optimization and the development of safe and effective anti-inflammatory drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.