Abstract

The fragilities of over 150 different network-forming glass melts are shown to conform to a common dependence on just one parameter: the connectivity of the weakest network structure present in the associated glass solid. This includes both nonoxide network-forming chalcogenide melts as well as a variety of alkali oxide glasses, and spans a broad range of connectivity, ϕ, from polymeric structures (ϕ=2) to overconstrained random networks with connectivities well in excess of the rigidity threshold (ϕ(C)=2.4). A theoretical framework for the origin of this universal pattern is offered within the context of entropic models of the glass transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.