Abstract

The main objective of the present study is to develop seismic fragility curves of an idealized pile-supported wharf with batter piles through a practical framework. Proposing quantitative limit states, analytical fragility curves are developed considering three engineering demand parameters (EDPs), including displacement ductility factor (µd), differential settlement between deck and behind land (DS) and normalized residual horizontal displacement (NRHD). Analytical fragility curves are generated using the results of a numerical model. So, the accuracy and reliability of resulted fragility curves directly depend on how accurate the seismic demand quantities are estimated. In addition, the seismic performance of pile-supported wharves is highly influenced by geotechnical properties of the soil structure system. Hence, a sensitivity analysis using the first-order second-moment (FOSM) method is performed to evaluate the effects of geotechnical parameters uncertainties in the seismic performance of the wharf.Herein, the seismic performance of the wharf structure is simulated using the representative FLAC2D model and performing nonlinear time history analyses under a suit of eight ground motion records. Incremental dynamic analysis (IDA) is used to estimate the seismic demand quantities. As a prevailing tool, adopted fragility curves are useful to seismic risk assessment. They can also be used to optimize wharf-retrofit methods. The results of sensitivity analysis demonstrate that uncertainties associated with the porosity of loose sand contribute most to the variance of both NRHD and µd. While in the case of differential settlement, the friction angle of loose sand contributes most to the variance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.