Abstract

Hydraulic fracturing technology has become a common practice to enhance the permeability of coal seams, and its effectiveness significantly impacts the productivity of coalbed methane (CBM) wells. In this study, multiple data sets, including fracturing reports, productivity data, and microseismic monitoring, were utilized to analyze the factors influencing fracturing effectiveness and gas well production at the southern margin of the Qinshui Basin, China, especially the Zhengzhuang and Fanzhuang blocks. Statistics revealed that the fracturing displacement, liquid consumption, and sand consumption were 8 m3/min, 17.69-1386.52 m3 (averaging 728.42 m3), and 28.5-46.1 m3 (averaging 40 m3), respectively. There were differences in the types of fracturing curves among blocks or well groups, and the natural fracture system was identified as the key factor affecting their characteristics. The coal seams with high density of microfractures in Zhengzhuang reduce the fracture threshold of reservoirs during hydraulic fracturing, resulting in a lower fracture response ratio than that of Fanzhuang (71.0 vs 80.3%). Well groups with higher microfracture width in coal seams (Group-ZC and DS) experienced a further reduction in fracture response (averaging 67.2 vs 80.3%), and the connection of hydraulic fractures (HFs) with these high-permeability microfractures lead to an increase in the proportion of fluctuating fracturing curves (averaging 52.2 vs 33.6%). Regional structural features and fracturing effectiveness jointly affected the production of CBM wells. The productivity in Zhengzhuang was lower than that in Fanzhuang due to the highly developed faults and deeply buried coal seams. Shallow coal seams with a high width of microfractures and a low-stress environment were easily supported by a proppant, forming a complex HF network and yielding a high productivity (Group-ZC and DS). For other deeper well groups, proppant migration became unfavorable once high-angle and complex branch HF clusters formed in coal seams, leading to local low-efficiency wells and fluctuating fracturing curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.