Abstract

The work investigates an influence of the macroscopic stress concentrator inside the ceramic open cell foam structure on the fracture-mechanics response of the foam upon the tensile test. As the concentrator, the central crack/rectangular notch was taken into account. The influence of the crack/notch length and width on the stress concentration ahead the concentrator tip was assessed using the simplified FE beam element based model with irregular cells simulating the real ceramic foam structure. Average principal stresses calculated on set of struts ahead the crack/notch tip were compared with average stresses in the intact structure. It was found that the ratio of these stresses increases linearly with the crack length. The stress concentration ratio is slightly lower in case of thick rectangular notch than in case of a thin crack. Furthermore, the failure load leading to complete fracture of the studied specimens, subjected to the tensile loading, were calculated using the same model. It is shown that the difference factor between the critical fracture force in case of structure without concentrator and with concentrator is very close to the concentration factor calculated from the average stresses on particular struts in the region in front of the concentrator tip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.