Abstract

Hydraulic fracturing is a key technology for improving the permeability of coal reservoirs. Understanding the variation of hydraulically induced fractures is crucial for improving coalbed methane production. In this study, we conducted a laboratory-simulation of hydraulic fracturing in coal and applied X-ray computer tomography (CT) and digital volume correlation (DVC) to quantify the spatial distribution, structural variation, and propagation of fractures with an aperture greater than 28.4 μm. Hydraulic fracturing increased the aperture, volume (by 5.3, 32.2, 2.2 and 2.8 times) and surface area (by 1.1, 9.9, 1.8 and 0.8 times), and simplified fracture morphology in the four tested samples. Moreover, the significant influence range in the axial direction of hydraulic fracturing on fracture is 4.2 cm, 4.4 cm, 1.9 cm and 2.9 cm, respectively, with fracture connectivity reaching 61.8%, 99.3%, 77.7%, and 91.1%. A low in-situ stress differential resulted in the formation of a complex network of many fractures with a small volume. A high in-situ stress differential resulted in the formation of large fractures with a simple morphology. The X-ray CT images also showed that new fractures originated in and propagated along the mineral–maceral interface. DVC shows that high volume displacement and strain occur in the fracture area induced by hydraulic fracturing, and it has a good application prospect in the investigation of the microevolution and microdamage of fractures in coal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.