Abstract
ObjectivesTo investigate the fracture toughness (KIC), work of fracture (WOF), flexural strength (FS) and elastic modulus (E) of four additively manufactured denture base resins in two different measurement environments after artificial aging. MethodsRectangular specimens in two different dimensions (n = 480) were 3D-printed with four denture base resins: Denture 3D+ (DEN; NextDent), Fotodent Denture (FOT; Dreve ProDiMed), Freeprint Denture (FRE; Detax), V-Print dentbase (VPR; VOCO)). KIC, WOF, FS and E were measured after (1) water-storage (37 °C; KIC = 7 d; FS = 50 h); (2) water-storage + hydrothermal-aging (20 min, 0.2 MPa, 134 °C); (3) water storage + thermocycling (10,000 cycles, 5/55 °C) in two measurement environments (i) air-23 °C and (ii) water-37 °C. For FS, fracture types were classified, and relative frequencies determined. Univariate ANOVA, Kruskal–Wallis, Mann–Whitney U, and Spearman’s correlation were calculated (p < 0.05, SPSS V.27.0). Weibull modulus (m) was calculated using the maximum likelihood estimation method. ResultsDEN showed the highest KIC (5/6 groups), WOF and highest corresponding m (1/6 groups), while FRE presented the highest FS (2/6 groups) and E values. Hydrothermal-aging and thermocycling reduced KIC and WOF, FS and E, and the number of FS fracture pieces. For 6/8 groups, hydrothermal aging resulted in lower FS than thermocycling. Measurement in air-23 °C led to higher FS for 7/12 groups and a more brittle fracture behavior. A positive correlation between KIC and FS was observed. SignificanceWith measurements in air-23 °C resulting in higher FS than reported in water-37 °C, the measurement environment should be adapted to the clinical situation to allow valid predictions on the mechanical behavior of denture base resins when in situ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the mechanical behavior of biomedical materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.