Abstract

The testing of fracture toughness becomes problematic when only limited amount of material is available that hinders the production of typical beam specimens to be tested in bending. Here we explore fracture toughness testing methodologies that allow for small discs and plates having surface cracks to be tested in biaxial flexure using the Ball-on-3-balls (B3B) set-up, or sawed notches as in the Compact Tension geometry. The B3B-KIc test has shown to be versatile and account for a very small overestimation of the KIc-value in the order of 0.8–1.25% due to in-plane crack mispositioning, and a maximum of 4% if a worst-case scenario of additional out-of-plane mispositioning is assumed. The geometrical factor in the standard SCF method, derived by Newman and Raju, resulted in an overestimation of ∼8% of the KIc-value compared to the new calculation by Strobl et al. for materials with Poisson’s ratio <0.3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call