Abstract

This paper evaluates the fracture toughness of sodium aluminosilicate hydrate (N-A-S-H) gel formed through alkaline activation of fly ash via molecular dynamics (MD) simulations. The short- and medium-range order of the constructed N-A-S-H structures shows good correlation with the experimental observations, signifying the viability of the N-A-S-H structures. The simulated fracture toughness values of N-A-S-H (0.4–0.45 MPa m0.5) appear to be of the same order as the available experimental values for fly ash-based geopolymer mortars and concretes. These results suggest the efficacy of the MD simulation toward obtaining a realistic fracture toughness of N-A-S-H, which is otherwise very challenging to obtain experimentally, and no direct experimental fracture toughness values are yet available. To further assess the fracture behavior of N-A-S-H, the number of chemical bonds formed/broken during elongation and their relative sensitivity to crack growth are evaluated. Overall, the fracture toughness of N-A-S-H presented in this paper paves the way for a multiscale simulation-based design of tougher geopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.