Abstract

The failure process of short-fibre reinforced thermoplastics is characterized by different energy dissipation mechanisms, especially by mode II debonding along the fibre/matrix interface, sliding of debonded regions, brittle or ductile matrix fracture and pull-out. It is assumed that these failure processes are acting within a certain zone ahead of the notch tip— the dissipation zone. The modes of energy dissipation are mainly affected by the matrix fracture mode (brittle or ductile) which is mainly determined by the loading rate or temperature conditions. On the basis of an energy principle and relationships for the different energy dissipation mechanisms, we propose theoretical expressions for the static and dynamic fracture toughness and we compare these with experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.