Abstract

The boriding treatment is the suitable process which caused an increase in surface hardness and wear resistance of nickel and its alloys. However, the phase composition of boride layers strongly influences on layer properties—especially hardness and brittleness. The method of plasma paste boriding was used in this study to produce the hard boride layers on nickel-based alloys: Ni201, Inconel 600, and Nimonic 80A. This process was carried out at 800 °C (1073 K) for 3 h. The chemical composition of substrate material was the reason for producing of layers which were characterized by different thickness: 55 μm for Ni201, 42 μm for Inconel 600, 35 μm for Nimonic 80A. The lowest hardness (1000–1400 HV) and the highest fracture toughness (up to 2.6915 MPa m1/2) were measured for layer produced on Ni201. In this specimen, only nickel borides were detected. However, due to high content of chromium, in case of Inconel 600-alloy and Nimonic 80A-alloy, the higher hardness (in the range of 1000–2450 HV) and higher brittleness (average value of K c = 0.77 MPa m1/2 for Inconel 600-alloy and K c = 0.67 MPa m1/2 for Nimonic 80A-alloy) were calculated. This situation was caused by the appearance of hard ceramic phases (chromium borides CrB and Cr2B) in borided layer. Simultaneously, at the cross section of each sample, the strong fluctuation of hardness occurred, due to the variable participation of chromium and nickel borides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.