Abstract

AbstractThe static and impact fracture toughness of phenolphthalein polyether ketone (PEK‐C) were studied at different temperatures. The static fracture toughness of PEK‐C was evaluated via the linear elastic fracture mechanics (LEFM) and the J‐integral analysis. Impact fracture toughness was also analyzed using the LEFM approach. Temperature and strain rate effects on the fracture toughness were also studied. The enhancement in static fracture toughness at 70°C was thought to be caused by plastic crack tip blunting. The increase in impact fracture toughness with temperature was attributed two different mechanisms, namely, the relaxation process in a relatively low temperature and thermal blunting of the crack tip at higher temperature. The temperature‐dependent fracture toughness data obtained in static tests could be horizontally shifted to match roughly the data for impact tests, indicating the existence of a time–temperature equivalence relationship. © 1995 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call